

LA-UR-21-22766

Approved for public release; distribution is unlimited.

Title: DFT for design and characterization of functional materials

Author(s): Nelson, Tammie Renee

Intended for: Report

Issued: 2021-03-22

DFT for design and characterization of functional materials

Comparison between experimental and ab initio calculated. When Jcouplings are near zero, a sign error may result. This is remedied by applying a linear correction factor.

The simulated (red) and experimental spectra (black) of the ¹⁹F region of 1,4-difluorobenzene. The simulated spectra each contain an additional J-coupling. Clearly, the subspectra are well simulated only when all heteronuclear and homonuclear J-couplings were included.

DFT for design and characterization of functional materials

Oscillator strengths for IR active modes:

$$f(\nu) = \sum_{\alpha} \left| \sum_{s\beta} Z_{\alpha\beta}^{*}(s) e_{\beta}(s|\nu) \right|^{2}$$

 $e_{\beta}(s|n)$ normalized vibrational eigenvector of mode ν

 $Z^*_{\alpha\beta}$ Born effective-charge tensor of atom s

Develop a modeling framework to predict IR spectra of glassy materials using VASP software package supporting program development

- (1) Phonon modes from DFPT (Density-Functional Perturbation Theory) method available in VASP 5.* version
- (2) Born effective charge (BEC) tensor giving the change of atoms polarizability w.r.t. an external electric field

Workflow and simulated IR transmission spectrum for ZnSe simulation cell with 8 atoms

Preliminary result for generating initial amorphous silicon ${\rm SiO_2}$ geometries starting from a supercell at 0K (left) and using NVT heating to 4000K (right).